Package 'ahptopsis2n'

Title: Hybrid Method for Multiple Criteria Decision-Making (MCDM)
Description: Implementation of a hybrid MCDM method build from the AHP (Analytic Hierarchy Process) and TOPSIS-2N (Technique for Order of Preference by Similarity to Ideal Solution - with two normalizations). This method is described in Souza et al. (2018) <doi: 10.1142/S0219622018500207>.
Authors: Raquel Coutinho [aut, cre], Marcos dos Santos [aut]
Maintainer: Raquel Coutinho <[email protected]>
License: GPL-3
Version: 0.2.0
Built: 2025-02-28 04:00:57 UTC
Source: https://github.com/cran/ahptopsis2n

Help Index


AHP-TOPSIS-2N method

Description

AHP-TOPSIS-2N is a hybrid multi-criteria decision-making method build from the AHP (Analytic Hierarchy Process) and TOPSIS-2N (Technique for Order of Preference by Similarity to Ideal Solution - with two normalizations).

Usage

ahptopsis2n(decision, criteria, minmax)

Arguments

decision

a matrix where rows correspond to the alternatives and columns correspond to criteria.

criteria

a matrix with pairwise comparison of criteria as in Analytic Hierarchy Process method.

minmax

a vector with objectives, minimize or maximize, to each criteria.

Details

criteria must be in the same order on the arguments.

Value

a list with consistency ratio and two dataframes with priority sorting of the alternatives.

Author(s)

Raquel Coutinho [email protected], Marcos dos Santos [email protected]

References

Souza, L. P. de, Gomes, C. F. S. and De Barros, A. P. (2018). Implementation of New Hybrid AHP–TOPSIS-2N Method in Sorting and Prioritizing of an it CAPEX Project Portfolio. International Journal of Information Technology & Decision Making. DOI: 10.1142/S0219622018500207.

Examples

decision<-matrix(c(64, 48, 1400,
                   128,64, 1900,
                   64, 32, 1100), ncol=3, byrow=TRUE)

rownames(decision)<- c("A1", "A2", "A3")


criteria<-matrix(c(1, 3, 1/3,
                   1/3, 1, 1/5,
                   3, 5, 1), ncol=3, byrow=TRUE)

minmax<-c("max", "max", "min")

ahptopsis2n(decision=decision, criteria=criteria, minmax=minmax)