Title: | Hybrid Method for Multiple Criteria Decision-Making (MCDM) |
---|---|
Description: | Implementation of a hybrid MCDM method build from the AHP (Analytic Hierarchy Process) and TOPSIS-2N (Technique for Order of Preference by Similarity to Ideal Solution - with two normalizations). This method is described in Souza et al. (2018) <doi: 10.1142/S0219622018500207>. |
Authors: | Raquel Coutinho [aut, cre], Marcos dos Santos [aut] |
Maintainer: | Raquel Coutinho <[email protected]> |
License: | GPL-3 |
Version: | 0.2.0 |
Built: | 2025-02-28 04:00:57 UTC |
Source: | https://github.com/cran/ahptopsis2n |
AHP-TOPSIS-2N is a hybrid multi-criteria decision-making method build from the AHP (Analytic Hierarchy Process) and TOPSIS-2N (Technique for Order of Preference by Similarity to Ideal Solution - with two normalizations).
ahptopsis2n(decision, criteria, minmax)
ahptopsis2n(decision, criteria, minmax)
decision |
a matrix where rows correspond to the alternatives and columns correspond to criteria. |
criteria |
a matrix with pairwise comparison of criteria as in Analytic Hierarchy Process method. |
minmax |
a vector with objectives, minimize or maximize, to each criteria. |
criteria must be in the same order on the arguments.
a list with consistency ratio and two dataframes with priority sorting of the alternatives.
Raquel Coutinho [email protected], Marcos dos Santos [email protected]
Souza, L. P. de, Gomes, C. F. S. and De Barros, A. P. (2018). Implementation of New Hybrid AHP–TOPSIS-2N Method in Sorting and Prioritizing of an it CAPEX Project Portfolio. International Journal of Information Technology & Decision Making. DOI: 10.1142/S0219622018500207.
decision<-matrix(c(64, 48, 1400, 128,64, 1900, 64, 32, 1100), ncol=3, byrow=TRUE) rownames(decision)<- c("A1", "A2", "A3") criteria<-matrix(c(1, 3, 1/3, 1/3, 1, 1/5, 3, 5, 1), ncol=3, byrow=TRUE) minmax<-c("max", "max", "min") ahptopsis2n(decision=decision, criteria=criteria, minmax=minmax)
decision<-matrix(c(64, 48, 1400, 128,64, 1900, 64, 32, 1100), ncol=3, byrow=TRUE) rownames(decision)<- c("A1", "A2", "A3") criteria<-matrix(c(1, 3, 1/3, 1/3, 1, 1/5, 3, 5, 1), ncol=3, byrow=TRUE) minmax<-c("max", "max", "min") ahptopsis2n(decision=decision, criteria=criteria, minmax=minmax)